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Spatial control of a classical electron state in a Rydberg atom by adiabatic synchronization

E. Grosfeld and L. Friedland
Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

~Received 12 November 2001; published 10 April 2002!

An adiabatic synchronization approach is used to control orbital eccentricity and inclination of a highly
excited electron in a hydrogen atom. The approach is based on persisting nonlinear phase locking~autoreso-
nance! between spatially uniform, chirped frequency oscillating electric field, and the classical Keplerian
motion of the electron in the atom. Efficient control in three dimensions is achieved by slow passage through
and capture into different resonances. Scenarios guaranteeing the capture and continuing synchronization in the
system are outlined, all requiring the driving field amplitude to exceed a threshold. The threshold scales asA3/4,
whereA is the sweep rate of the driving frequency at resonance. The adiabatic synchronization allows one to
accelerate the electron gradually by using dipolar fields, until approaching the stochastic ionization limit.

DOI: 10.1103/PhysRevE.65.046230 PACS number~s!: 05.45.Xt, 32.80.Rm
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I. INTRODUCTION

Extensive theoretical and experimental work in the l
three decades has been devoted to the study of dynami
highly excited ~Rydberg! atoms in microwave fields. This
research was stimulated by experiments of Bayfield
Koch @1#, measuring the probability of ionization of beam
of highly excited hydrogen atoms passing through a mic
wave cavity. Leopold and Percival@2# applied a classica
approach to microwave ionization of Rydberg hydrogen
oms and described the electron as moving on a classical
in an oscillating, linearly polarized electric field. Results
Monte-Carlo simulations of ionization based on this mo
were close to the experimental results of Bayfield and Ko
Meerson, Oks, and Sasorov@3# suggested a mechanism fo
the ionization of Rydberg atoms based on stochastic insta
ity of the classical motion of the electron in the atom. Sin
these early works, the use of classical~and semiclassical!
ideas in studying highly excited perturbed atomic and m
lecular systems gained momentum covering various issue
microwave ionization~for a review see Ref.@4#!, as well as
many other aspects, such as nonspreading wave packe
sociated with resonantly driven Rydberg states@5,6#, chaotic
dynamics with broken time-reversal symmetry@7#, effects of
elliptical polarization of the microwave fields@8#, and use of
Rydberg atoms as sensitive magnetic probes@9#, to name just
few recent examples.

One of the classical ideas applied to Rydberg atoms
the use of the synchronization~phase locking! phenomenon
to control the electron state of the atom by chirped frequen
radiation. The idea was based on creating an atomic s
such that the Keplerian motion of the electron in the at
was phase locked with an external oscillating electric fi
having chirped frequency. When such a phase locking
sustained continuously, despite the variation of the driv
frequency, one could observe adiabatic adjustment of
electron state~its energy, for example! to stay in resonance
with the driving perturbation. The first application of th
approach to Rydberg atoms@10# used a simplified one
dimensional~1D! electron orbit model and showed that th
mechanism of phase locking in the system was similar to
used in a certain type of charged particle accelerator@11#, so
1063-651X/2002/65~4!/046230~8!/$20.00 65 0462
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the termRydberg acceleratorwas suggested for this applica
tion. Later, a similar idea was suggested for exciting a
controlling vibrational states of diatomic molecules@12#. In
addition to limitations imposed by 1D modeling, exact initi
matching between the characteristic frequency of the ato
or molecular system and that of the driving field was a
sumed in these studies. This approach required fine in
tuning of the driving frequency, while the continuing pha
locking in the system was observed only for some range
initial phases of the driving field.

In the present work we propose the use ofpassage
throughresonance, as a tool to phase lock efficiently with t
driving perturbation,regardlessof the initial driving phase.
We shall also generalize to 3D and show how the synch
nization via passage through resonance allows to fully c
trol the dynamics of the driven system~orbital eccentricity
and inclination! by slowly varying parameters of the drivin
field. These ideas have been already used successful
both theory and experiments in other applications. Rec
examples are excitation and control of nonlinear waves@13#,
creation of nontrivial 2D vortex states in fluids@14,15#, and
pure electron plasmas, and the explanation of observed l
eccentricities of transneptunian objects~Plutinos! in the solar
system@16,17#. The elements of the analysis in the latt
work are applied here to a related problem of adiabatica
driven Rydberg atom in its full 3D complexity. The scope
our presentation will be as follows. We shall consider sp
tially uniform, quasimonochromatic oscillating electric field
with slowly varying frequencies, passing through differe
l :m resonances in the system~i.e., lVK5mv, VK and v
being the Keplerian frequency of the electron and the f
quency of the driving field!. In particular, Secs. II and III
identify 2:1 and 1:1 resonances with linearly polarized dr
ing electric fields as convenient candidates for adiabatic c
trol of the dynamics of Rydberg atoms. We shall show tha
both cases the theory reduces to studying the same pa
explicitly time dependent phase-amplitude evolution eq
tions with a single parameter~rescaled driving amplitude!.
We shall also show that this system yields efficient reson
trapping, followed by continuing phase locking~synchroni-
zation! with the driving field, provided this parameter ex
ceeds a threshold. In Sec. IV, we discuss the validity crite
©2002 The American Physical Society30-1
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of our analysis and, finally, Sec. V presents our conclusio

II. 2:1 RESONANCE, ECCENTRICITY CONTROL, AND
THRESHOLD PHENOMENON

Our starting point is the classical Hamiltonian of an ele
tron in a hydrogen atom perturbed by a linearly polariz
quasimonochromatic oscillating electric field~along theZ
direction!

H5H01Zm cosC, ~1!

whereH05p2/221/r is the unperturbed Hamiltonian,m rep-
resents the amplitude of the driving field,C is its phase, and
v(t)5dC/dt is the time dependent frequency of the pert
bation. We shall consider the case when the unpertur
electron starts on a circular orbit of radiusr 0 and angular
frequencyV05e(mer 0

3)21/2. Note that, for convenience, w
replacede, me51 in the Hamiltonian, equivalent to usin
dimensionless time t→V0t, dimensionless coordinate
(X,Y,Z)→(X,Y,Z)/r 0 and radiusr→r /r 0, and normalizing
the momentumpW→pW /(meV0r 0). We also introduced dimen
sionless field amplitudem→(r 0

2/e)E0 in the Hamiltonian,
with E0 being the original amplitude. All frequencies in th
problem are dimensionless and correspond to original
quencies normalized with respect toV0. For simplicity, we
use linear frequency chirp,v(t)5v02At, whereA is the
chirp rate andv0 corresponds to normalized angular fr
quency~or its harmonics! of the unperturbed electron, so, fo
example,v052 if the 2:1 resonance is considered. Note th
in dimensionless notations,A corresponds to originalA/V0

2.
We shall also assume adiabaticity, i.e.,k5uAu1/2/v0!1, as
well as thatm!1, so the driving field can be treated as
perturbation. But, we shall usek/m!1, and, therefore,m
will always be the largest of the two small parameters in
problem.

It is convenient, at this stage, to transform to the acti
angle variablesI 1,2,3 and u1,2,3 @18# of the unperturbed
problem. Thenormalized actions are related to differen
physical quantities, I 15Mz /M0 , I 25M /M0, and I 3

5M0
21(mee

4/2uEu)1/2, whereM is the magnitude of the tota
angular momentum,Mz is the momentum projection on th
Z axis ~the direction of polarization of the driving electri
field!, E is the energy of the unperturbed electron, and
normalization constantM05meV0r 0

2 is the initial angular
momentum. The anglesu1,2 are Euler’s angles~see Fig. 1!
u15f, u25c. The third Euler’s anglei ~inclination!, eccen-
tricity «, and normalized semimajor axisa of the ellipse are
simply related to the dimensionless actions, i.e., ci
5I1 /I2, «2512I 2

2/I 3
2, anda5I 3

2.
Next, we transform the Hamiltonian~1! to the action-

angle variables@3#

H5H01mH1 cosC, ~2!

where the unperturbed partH0521/2I 3
2 ~see, e.g., Ref.

@18#!, H15sin i(k51
` (ak cosku3 sinu21bk sinku3 cosu2), and

coefficientsak and bk are ak5(2a/k)Jk8(k«); bk5@2a(1
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2«2)1/2#/k«Jk(k«) @19#. HereJk(x) andJk8(x) are the Besse
function of integer orderk, and its derivative.

At this point, we proceed to studying passage throu
resonance in our driven system. Recall that the atomic e
tron is on a circular orbit initially~i.e., «50 at some large
negativet) and its Keplerian frequency is out of resonan
~see below! with the driving perturbation. Since the drivin
field is small, we focus on the case of small eccentricitie«
initially. In this case a1'b1'a, a2'b2'«a/2, while
O(ak.2);O(bk.2);O(«k21). We observe that only term
with a2 andb2 in the perturbed part of 2 are proportional
«. We shall see below that this dependence on« in the
Hamiltonian yields efficient phase locking when the drivin
field oscillation passes the resonance associated with t
terms. Consequently, in studying the phase locking in
system we retain the terms withk52 only in H1. The result-
ing perturbed part of the Hamiltonian is

H85
m sin i

4
@~a21b2!cosF11~a22b2!cosF2#, ~3!

whereF652u36u22C7p/2. Furthermore, sincea22b2
is small at small«, we focus on the resonance associa
with the term having coefficienta21b2 in H8 above, i.e.,
arrive at thesingle resonanceHamiltonian

Hsr5H01
m sin i

4
~a21b2!cosF. ~4!

To lowest order in«, Hsr has the form

Hsr52
1

2I 3
2

1
m«a

4
sin i cosF, ~5!

whereF5F1 . This Hamiltonian yields the following evo
lution equations:

İ 150, ~6!

FIG. 1. The Keplerian ellipse~dotted line! and Euler’s anglesf,
c, and i. The electric field polarization is in theZ direction in the
rest frame (X,Y,Z). PointsP andN denote periapsis and ascendin
node in astronomical notations. Axesx,y ~not shown!, and z are
attached to the ellipse.
0-2
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SPATIAL CONTROL OF A CLASSICAL ELECTRON STATE . . . PHYSICAL REVIEW E 65 046230
İ 25
m«a

4
sin i sinF, ~7!

İ 35
m«a

2
sin i sinF; ~8!

u̇152
m«aI1

4I 2
2 sin i

cosF,

u̇25
ma

4 S «I 1
2

I 2
3 sin i

2
I 2 sin i

«I 3
2 D cosF,

u̇35VK1
m

4
sin i S 2«I 31

I 2
2

«I 3
D cosF,

where (. . . )5d( . . . )/dt, and VK51/I 3
3 is the Keplerian

frequency of the unperturbed electron.
Now, in agreement with the form of phaseF, we seek

passage through 2:1 resonance, i.e., 2VK5v0 at t50 ~re-
call that the driving frequency isĊ5v5v02At!. Observe
that Eqs.~6!–~8! yield two conservation laws

I 15I 10, 2I 22I 351, ~9!

where initially ~on the circular orbit!, I 205I 3051. Therefore,
the problem reduces to a one-degree-of-freedom case c
acterized by, for example,I 3 and F. We write I 3511dI ,
wheredI is small in the initial evolution stage. ThenI 251
1dI /2, «'dI 1/2, sini'(12I10

2 )1/25sin i0, and, to lowest or-
der in «, our evolution equations yield

d İ 5
m sin i 0

2
dI 1/2sinF, ~10!

Ḟ5At26dI 1
m sin i 0

4
dI 21/2cosF. ~11!

Finally, we use rescaled eccentricityD5A6A21/4« as a new
dependent variable instead ofdI , introduce a new~slow!
time variablet5A1/2t, and obtain the following evolution
equations:

dD

dt
5h sinF, ~12!

dF

dt
5t2D21

h

D
cosF, ~13!

where h5A3/8A23/4m sin i0 is the rescaled driving ampli
tude.

The system~12!, ~13! comprises a pair of time depende
equations with asingleparameterh. Note the presence of th
characteristic term withD21 in the phase equation in thi
system. This singular term is the direct consequence of le
ing theO(«) term only in the single resonance Hamiltonia
and plays a major role in the resonant phase locking p
nomenon. Indeed, the form of the reduced evolution eq
04623
ar-

v-

e-
a-

tions~12! and~13! is the same as that studied previously@20#
and, thus we can use already known results. One of the
portant conclusions of that theory is that if one starts w
small D at large negativet, then, regardless of the initia
value ofF, the singular term withD21 in the phase equation
guarantees efficient trapping into resonance followed by c
tinuing synchronization (dF/dt'0) in the system att.0
as well, provided the driving parameter is above a thresh
Numerically, the threshold ish th50.411, while physical ar-
guments yield a somewhat higher valueh th5323/450.439.
Therefore, by returning to our original parameters, we obt
the following scaling of the threshold driving amplitude wi
respect to the driving frequency chirp rateA, and initial in-
clination i 0:

m th50.67~sin i 0!21A3/4. ~14!

The phase locking in our reduced system means that
phase mismatchF remains small at all times, i.e., at larg
positive t, we obtain a monotonically increasing solutio
D2't, in other words, a monotonic increase of the ecc
tricity. Fully nonlinear treatment of the problem is necessa
when the eccentricity becomes large. Such fully nonlin
theory of phase locked evolution can still be based on sin
resonance approximation. Its details are similar to those
scribed in other applications~e.g., Ref.@10#! and we shall not
present these details here. Nevertheless, we mention tha
conservation laws~9! still hold within the single resonanc
approximation in the fully nonlinear regime, while pha
locking Ḟ'2u̇31 u̇22v(t)'0 is preserved, as long as ad
ditional conditions are satisfied~see the discussion of thes
conditions in Sec. IV!. Then the approximate relation 2VK
'v(t) is satisfied at later times, or

2/I 3
3'22At. ~15!

Thus, the synchronized state yields acceleration of the e
tron and gradual approach towards the ionization limitI 3
→` ~see Sec. IV!. The simple time dependence~15!, in
combination with the conservation laws~9!, can be used for
calculating the eccentricity of the phase locked state

«2512I 2
2/I 3

2512~1/4!~1/I 311!2. ~16!

We obtain a growing solution for«, asymptotically ap-
proaching«5(3/4)1/2 at I 3→`. Similarly, one can find the
expression for the inclination of the orbit:

cosi 5I 1 /I 252 cosi 0 /~11I 3!. ~17!

Therefore, the inclination angle increases as phase loc
continues, approachingp/2 at I 3→`. Finally, the linear
chirp of the driving frequency is not necessary for preser
tion of the phase locking in the system. Once trapped,
can use arbitrary, but sufficiently slow chirp form, i.e., r
place At in Eq. ~15! by any slow functionf (t) and even
reverse the variation of the driving frequency@20#. In the
latter case one will gradually return to a nearly original c
cular state as described by Eqs.~16! and ~17!.
0-3
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E. GROSFELD AND L. FRIEDLAND PHYSICAL REVIEW E65 046230
Now, we discuss evolution of canonical angles in t
phase locked state when the average value ofF remains
small. The phase locking yields one connection betweenu1
andu2. On the other hand, whenF is small, one can replac
cosF in the first equation in Eq.~8! by unity, yielding u̇1

52m«aI1/4I 2
2sin i, which describes a slow and slowly vary

ing precession of the orbital plane around the direction of
driving electric field. This motion completely defines bo
canonical anglesu1 andu2 . The evolution of the third angle
is approximately given by the slowly varying Keplerian fr
quency of the electron, i.e.,u̇3'1/I 3

3 @see the third equation
in Eq. ~8!#. Thus, the evolution of all degrees of freedom
determined. Remarkably, in the synchronized regime,
complete motion can be approximately derived from sim
algebraic relations~15!–~17!.

At this stage, we illustrate our theory by numerical e
amples. Figure 2 shows the trajectory of the electron in
phase locked regime as obtained by passage through
resonance. We show the case of chirp rateA50.002, driving
parameterm50.015, andi 05p/2 ~driving field in the plane
of the orbit!. The threshold driving parameter in this ca
was m th50.0063. We used a full Hamiltonian~1! in calcu-
lating this trajectory. One can see a slow increase of ecc
tricity as well as precession of the trajectory described abo
Further results of these calculations are given in Fig. 3 sh
ing the evolution of eccentricity of the orbit. The solid line
the figure represents the numerical solution of the ex
problem described by Eq.~1!, the dotted line is obtained b
solving reduced weakly nonlinear systems~12! and ~13!,
while the dashed line is given by the algebraic equation~16!.
We see a gradual increase of the eccentricity beyond
linear resonance, indicating continuing phase locking in

FIG. 2. The trajectory of the driven electron in the phase lock
regime during passage through a 2:1 resonance with chirped
quency driving electric field. The chirp rate isA50.002, driving
parameterm50.015, and inclinationi 05p/2 ~driving field in the
plane of the orbit!. Initial orbit is circle r 51. One observes a
gradual increase of eccentricity of the orbit synchronized with
driving field, as well as slow precession around the origin.
04623
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system, and generally good agreement between differen
proximations. In addition, the lowest curve in the figure re
resents the solution of the exact problem for the same in
conditions and parameters as previously, but withm50.006,
i.e., below the threshold. The eccentricity saturates at so
value in this case, as the phase locking is destroyed bey
the linear resonance. Next, Fig. 4 compares scalings of
threshold for synchronization as obtained in calculations
ing the exact Hamiltonian@~D! i 05p/2, ~s! i 05p/4, ~h!
i 05p/6] and those given by Eq.~14! ~straight lines!. Again,
one can see a good agreement between the two results.

d
e-

e

FIG. 3. The evolution of eccentricity of the orbit. The param
eters are as in Fig. 2. The solid line: numerical solution of
problem described by the exact Hamiltonian. The dotted line
given by a reduced weakly nonlinear system. The dashed line
resents algebraic approximation. The lowest curve represents
lution of the exact problem with the same parameters, butm
50.006, i.e., below the synchronization threshold (m th50.0063).

FIG. 4. The threshold driving parameter for synchronizationm th

~circles! vs driving frequency chirp rateA for three different initial
inclinations@~D! i 05p/2, ~s! i 05p/4, ~h! i 05p/6], as obtained
in calculations using the exact Hamiltonian. The solid lines rep
sent results given by Eq.~14!.
0-4
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completes our first application of the adiabatic control of
electron state in the Rydberg atom by synchronization.

III. 1:1 RESONANCE AND INCLINATION CONTROL

We have seen in Sec. II how passage through 2:1 re
nance, results in efficient trapping into resonance follow
by continuing synchronization with the drive, provided o
usessmall eccentricityinitial condition («0'0) and if the
driving amplitude is above a threshold. We have left thek
52 term only in H1 in Eq. ~2!, i.e., constructed a singl
resonance Hamiltonian for studying this phenomenon. T
choice of resonance is not the only one yielding efficie
trapping. We shall show here that passage through 1:1 r
nance can be also used for achieving a similar goal, if,
tially, one hassmall inclination( i 0'0) of the orbit, i.e., the
driving field is nearly normal to the orbital plane. We sh
see that the corresponding single resonance Hamiltonian
also lead to a propersingular term in the phase mismatch
evolution equation for efficient capture into resonance.
us consider this problem in more detail. Now, we leave
k51 term only in Eq.~2!. The resulting perturbed part of th
Hamiltonian is

H85
m sin i

4
@~a11b1!cosF11~a12b1!cosF2#,

~18!

whereF65u36u22C7p/2. We focus again on the reso
nance associated with the first term in Eq.~18!, i.e., arrive at
the single resonance Hamiltonian

Hsr5H01
m sin i

4
~a11b1!cosF, ~19!

where the phase mismatch isF[F1 . Finally, for simplic-
ity, consider the case of initially nearly circular orbit, i.e
«0'0. Then, in the initial excitation stage,Hsr can be writ-
ten as

Hsr'2
1

2I 3
2

1
ma

2
i cosF, ~20!

where we approximated sini5A12I 1
2/I 2

2 by i.
The Hamiltonian ~20! yields the following evolution

equations for our action-angle variables:

İ 150,

İ 25
mai

2
sinF, ~21!

İ 35
mai

2
sinF;

u̇152
maI1

2I 2
2i

cosF,
04623
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u̇25
ma

2

I 1
2

I 2
3i

cosF, ~22!

u̇35VK1mI 3i cosF.

We see thatI 1 andI 22I 3 are conserved. Therefore the pro
lem again reduces to a one-degree-of-freedom system f
canonical pair, sayI 2 and F. Furthermore, initially, I 10
'I 205I 30 ( i 0'0,«050) and, therefore, at later times,

I 15I 10'1, I 2'I 3 . ~23!

In other words, the orbit remains nearly circular and only
inclination changes in time. If we writeI 25I 101dI , then, for
small i, one hasi 2512I 1

2/I 2
2'2dI . Then, to lowest order in

dI , the canonical system forI 2 andF is

İ 25 ḋI 5
m

2
i sinF, ~24!

Ḟ'VK2v~ t !1
m

2i
cosF. ~25!

If one further expandsVK5I 3
235I 2

23'I 10
2323dI , uses

v(t)5v02At, wherev05VK05I 10
23 , and usesi as an in-

dependent variable instead ofdI , one has

i̇ 5
m

2
sinF, ~26!

Ḟ'At2
3

2
i 21

m

2i
cosF. ~27!

Now, we introduce the slow timet5A1/2t, rescaled inclina-
tion D5(3/2)1/2i /A1/4 and arrive at the same reduced sing
parameter systems~12! and~13!, where the rescaled driving
parameter ish5A3/8A23/4m. Interestingly, this is the sam
value as for the 2:1 resonance problem described above
initial inclination of p/2. The corresponding threshold fo
trapping into 1:1 and synchronization is@compare to Eq.
~14!#

m th50.67A3/4. ~28!

At this point we have found conditions for capture in
resonance and synchronization. The aforementioned thr
old phenomenon was described in terms of weakly nonlin
theory. When our system is captured into resonance, the
clination grows with the decrease of the driving frequen
and, at some point, one must switch to a fully nonline
theory of the phase locked state. This theory is similar to t
given elsewhere@10# and we shall not present its details her
Nonetheless, one can show that once started, the phase
ing Ḟ5 u̇31 u̇22v(t)'0 continues, under additional cond
tions, in the fully nonlinear stage as well. ThenI 3

23'I 30
23

2At'12At, so

cosi 5I 1 /I 2'1/I 3'~12At!1/3. ~29!
0-5
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We see that the inclinationi grows in time and approache
p/2, i.e., the orbital plane rotates to aline with the directi
of the driving field. The orbit, at the same time, maintains
nearly circular form, as the phase locked electron is acce
ated and approaches the ionization limit. We illustrate
these conclusions in Fig. 5, showing the evolution of inc
nation and eccentricity in the process of passage through
resonance. The results where obtained by using equa
given by exact Hamiltonian~1!, chirp rateA50.002, and
driving parameterm50.015~the threshold value in this cas
is m th50.0063!. We see that, as predicted, the eccentric
remains small, while the inclination angle grows in the pha
locked state, nearly reachingp/3 at t5400 in this example,
and closely following the result predicted by Eq.~29! ~the
dashed line! beyond the linear resonance.

IV. DISCUSSION

Now, we discuss the validity of approximations of o
theory. The isolated resonance approximation used abov
valid as long asn!v(t), wheren is the characteristic fre
quency of small phase oscillations in the nonlinearly ph
locked regime@3#. If, in the process of adiabatic control, on
approaches the stage where this condition is violated,
synchronized slow evolution described above is replaced
stochastic instability and ionization of the atom for som
trajectories, due to resonance crossings. The frequencyn of
the trapped phase oscillations can be found by using ap
priate single resonance Hamiltonians@i.e., Eqs.~4! and~19!#.
Indeed, we write the following evolution equation equatio
associated with these Hamiltonians

dI3

dt
5

m l sin i

4
Rl sinF,

dF

dt
'

l

I 3
3

2v~ t !, ~30!

FIG. 5. The evolution of inclinationi and eccentricitye in the
process of passage through a 1:1 resonance with the driving
having polarization perpendicular to the initial plane of the orb
Exact Hamiltonian~1! was used in the calculations, chirp rate w
A50.002, and driving parameterm50.015. The dashed line: alge
braic approximation Eq.~29! beyond the linear resonance.
04623
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where l 51,2 corresponds to 1:1 and 2:1 resonance ca
described above, whileRl5(al1bl). Also, assuming a
strongly nonlinear stage, we have neglected small interac
terms in the second equation in Eq.~30!. Differentiation of
the second equation in Eq.~30! and use of the first equatio
then yields

d2F

dt2
'A2n2 sinF, ~31!

wheren253l 2m sin i/4I 3
4(al1bl). This equation describes

nonlinear pendulum~n is the slowly varying characteristic
frequency of small oscillations of the pendulum! under the
action of a small constant torque. Thus, the condition for
onset of stochastic instability~leading to ionization for some
trajectories! becomes

3l 2m sin i

4I 3
4 ~al1bl !5gv2~ t !, ~32!

whereg is some number between, say 0.1 and 1.0. Assum
that one approaches this stochastic transition limit adiab
cally through the synchronized state, we can estimate
time dependent parameters in this formula by using E
~16!, ~17!, or ~29!. We have tested condition~32! numerically
and show one of these tests in Figs. 6~a! and 6~b!. Figure 6~a!
shows transition to stochastic instability in the case of s
chronization by passage through 2:1 resonance with an
cillating electric field polarized linearly in the orbital plane
The figure shows the unperturbed partH0 of the exact

ld
.

FIG. 6. Transition to stochastic instability by passage throug
2:1 resonance.~a! The unperturbed partH0 of the exact Hamil-
tonian versus time for 10 numerical runs with the same initial c
ditions (r 51,i 05p/2) as in Fig. 2, but different, equally spaced o
@0,2p# initial differences between the phase of the Keplerian m
tion and that of the driving field. One observes that all trajector
are similar in the synchronized stage despite initial phase dif
ences, until the stochasticity threshold is reached att'700.~b! The
frequencyn ~s! of small phase oscillations of the phase lock
state and the driving frequencyv ~solid line! versus time. The
transition to instability and dephasing take place whenn'v(t)/5.
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Hamiltonian~1! versus time for 10 numerical runs with th
same initial conditions (r 51,i 05p/2) as in Fig. 2, but dif-
ferent, equally spaced on@0,p# initial differences between
the phase of the Keplerian motion and that of the driv
field. We used the driving frequencyv(t)5D1(2
2D)exp(2At/2) with D50.05, A50.005, and driving am-
plitude parameterm50.013 in these calculations, so th
resonance passage occurred att50. One observes that de
spite the initial phase difference, all trajectories are synch
nized after passage through resonance until the stochas
threshold is reached att'700. The phase locking discontin
ues beyond this time and, later, some trajectories reach
ization limit. Figure 6~b! compares the frequencyn ~s! of
small phase oscillations in the phase locked state with
driving frequency~solid line! as functions of time. One ca
see in the figures that the transition to stochastic instab
takes place whenn'v(t)/5. We also found thatn'v(t)/5
was a good criterion for transition to stochasticity for a bro
range of values of the driving parameter and chirp rate.

In addition to the single resonance conditionn!v(t), the
driving frequency must satisfy the adiabaticity condition

uv̇u/n25A/n2!1. ~33!

Previously, we have mentioned conditionk25A/v0
2!1, but,

sincen!v(t), Eq. ~33! is a stronger inequality. The reaso
for demanding Eq.~33! at this stage is seen from Eq.~31!.
Indeed, this equation describes a quasiparticle moving in
effective tilted cosine potential

Veff52AF2n2 cosF. ~34!

This potential possesses minima only if the tilting coefficie
A is not too large, i.e., whenn2.A. The existence of the
potential minima is necessary for having trapped oscillati
of F, corresponding to phase locked oscillations in our d
namical problem. Thus, Eq.~33! at all times is necessary fo
having persisting phase locking in our driven atomic syste

Finally, the quantum mechanics imposes the constrain
the principle quantum numbern5M0I 3 /\!1 ~recall that
we use dimensionless actionsI 1,2,3 normalized with respec
to the angular momentumM0 of the initial orbit!, and pos-
sibly other constraints, which are still unknown.

V. CONCLUSIONS

~i! We have studied passage through resonances and
chronization of the electron state of a Rydberg atom driv
by linearly polarized oscillating electric field with slowl
decreasing frequency. Two possibilities exist leading to e
cient ~100%! capture into resonance regardless the value
the initial driving phase. In both cases the electron is ac
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erated gradually approaching the ionization limit with t
decrease of the driving frequency.

~ii ! The first scenario requires starting on a circular or
and passage through 2:1 resonance with the driving fi
having a finite projection in the plane of the initial orbit. Th
capture into resonance in this case is followed by continu
phase locking in the system despite slow variation of
driving frequency provided the driving amplitude is above
threshold. The threshold amplitude scales asA3/4, A being
the chirp rate of the driving frequency. The continuing pha
locking in the system means slow evolution of the electr
orbit ~the eccentricity and inclination! in three dimensions,
reflecting self-adjustment of the electron state for staying
resonance with the driving field.

~iii ! The second scenario involves passage through
resonance when the driving field polarization is nearly p
pendicular to the plane of initially circular orbit. This rout
also leads to efficient capture into resonance, followed
continuing synchronization, provided the driving field amp
tude is above the threshold, which again scales asA3/4. When
trapped into resonance, the orbit, in this case, remains ne
circular at all times, while inclination of the orbit varie
slowly in time with the decrease of the driving frequency

~iv! The two scenarios above can be used separately
succession, or simultaneously for efficient three-dimensio
control of the electron state of the Rydberg atom. This c
trol process is reversible, i.e., the electron orbit can be
turned back to a nearly initial state by simply reversing t
direction of variation of the driving frequencyv(t).

~v! Two conditions must be satisfied for the validity of o
approach to manipulation of Rydberg atoms. One condit
is the continuing satisfaction of the single resonance appr
mation, i.e.,n!v(t), where n is the frequency of smal
phase oscillations in the phase locked state. If, in the ph
locked regime with the decrease of the driving frequen
one violates this condition, the phase locking in the system
destroyed and stochastic instability, leading to ionization
some trajectories, takes place. The second condition is
adiabaticity~33!, guaranteeing continuing phase locking
the system.

~vi! Finally, quantum mechanics requires the princip
quantum numbern to be much greater than unity to justif
our classical description of the dynamics. Addition
quantum-mechanical conditions may exist, but presently
unknown, since there exists no theory studying the transi
from classical to quantum regime in the driven phase loc
states described here. Development of such a theory seem
be an interesting goal for future work.
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