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Spatial control of a classical electron state in a Rydberg atom by adiabatic synchronization
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An adiabatic synchronization approach is used to control orbital eccentricity and inclination of a highly
excited electron in a hydrogen atom. The approach is based on persisting nonlinear phase(dat&nego-
nance between spatially uniform, chirped frequency oscillating electric field, and the classical Keplerian
motion of the electron in the atom. Efficient control in three dimensions is achieved by slow passage through
and capture into different resonances. Scenarios guaranteeing the capture and continuing synchronization in the
system are outlined, all requiring the driving field amplitude to exceed a threshold. The threshold sadfés as
whereA is the sweep rate of the driving frequency at resonance. The adiabatic synchronization allows one to
accelerate the electron gradually by using dipolar fields, until approaching the stochastic ionization limit.
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[. INTRODUCTION the termRydberg acceleratowas suggested for this applica-
tion. Later, a similar idea was suggested for exciting and
Extensive theoretical and experimental work in the lastcontrolling vibrational states of diatomic moleculg<]. In
three decades has been devoted to the study of dynamics adidition to limitations imposed by 1D modeling, exact initial
highly excited (Rydberg atoms in microwave fields. This matching between the characteristic frequency of the atomic
research was stimulated by experiments of Bayfield and@r molecular system and that of the driving field was as-
Koch [1], measuring the probability of ionization of beams sumed in these studies. This approach required fine initial
of highly excited hydrogen atoms passing through a microtuning of the driving frequency, while the continuing phase
wave cavity. Leopold and Perciv@R] applied a classical locking in the system was observed only for some range of
approach to microwave ionization of Rydberg hydrogen atdinitial phases of the driving field.
oms and described the electron as moving on a classical orbit In the present work we propose the use pdssage
in an oscillating, linearly polarized electric field. Results of throughresonance, as a tool to phase lock efficiently with the
Monte-Carlo simulations of ionization based on this modeldriving perturbationyegardlessof the initial driving phase.
were close to the experimental results of Bayfield and KochWe shall also generalize to 3D and show how the synchro-
Meerson, Oks, and Sasor$8] suggested a mechanism for nization via passage through resonance allows to fully con-
the ionization of Rydberg atoms based on stochastic instabikrol the dynamics of the driven systetarbital eccentricity
ity of the classical motion of the electron in the atom. Sinceand inclination by slowly varying parameters of the driving
these early works, the use of classi¢ahd semiclassical field. These ideas have been already used successfully in
ideas in studying highly excited perturbed atomic and mo-oth theory and experiments in other applications. Recent
lecular systems gained momentum covering various issues @xamples are excitation and control of nonlinear wé\i&s,
microwave ionization(for a review see Ref4]), as well as  creation of nontrivial 2D vortex states in fluifi$4,15, and
many other aspects, such as nonspreading wave packets aswe electron plasmas, and the explanation of observed large
sociated with resonantly driven Rydberg stdte$], chaotic  eccentricities of transneptunian obje®utinos in the solar
dynamics with broken time-reversal symmefi#], effects of ~ system[16,17. The elements of the analysis in the latter
elliptical polarization of the microwave field§], and use of work are applied here to a related problem of adiabatically
Rydberg atoms as sensitive magnetic prdi¥gsto name just  driven Rydberg atom in its full 3D complexity. The scope of
few recent examples. our presentation will be as follows. We shall consider spa-
One of the classical ideas applied to Rydberg atoms watally uniform, quasimonochromatic oscillating electric fields
the use of the synchronizatidphase locking phenomenon with slowly varying frequencies, passing through different
to control the electron state of the atom by chirped frequencyl:m resonances in the systethe., |Qx=mw, Oy and &
radiation. The idea was based on creating an atomic statbging the Keplerian frequency of the electron and the fre-
such that the Keplerian motion of the electron in the atomguency of the driving field In particular, Secs. Il and Il
was phase locked with an external oscillating electric fieldidentify 2:1 and 1:1 resonances with linearly polarized driv-
having chirped frequency. When such a phase locking wamg electric fields as convenient candidates for adiabatic con-
sustained continuously, despite the variation of the drivingrol of the dynamics of Rydberg atoms. We shall show that in
frequency, one could observe adiabatic adjustment of thboth cases the theory reduces to studying the same pair of
electron statdits energy, for examp)eto stay in resonance explicitly time dependent phase-amplitude evolution equa-
with the driving perturbation. The first application of this tions with asingle parameter(rescaled driving amplitude
approach to Rydberg atomd0] used a simplified one- We shall also show that this system yields efficient resonant
dimensional(1D) electron orbit model and showed that the trapping, followed by continuing phase lockirigynchroni-
mechanism of phase locking in the system was similar to thatation with the driving field, provided this parameter ex-
used in a certain type of charged particle acceleffdtbf, so  ceeds a threshold. In Sec. IV, we discuss the validity criteria
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of our analysis and, finally, Sec. V presents our conclusions. Z

»
>

II. 2:1 RESONANCE, ECCENTRICITY CONTROL, AND
THRESHOLD PHENOMENON

Our starting point is the classical Hamiltonian of an elec-
tron in a hydrogen atom perturbed by a linearly polarized
quasimonochromatic oscillating electric fieldlong theZ
direction

H=Hy+Zu cosV¥, (1)

whereH,=p?/2— 1/r is the unperturbed Hamiltoniaj, rep-

resents the amplitude of the driving fieM, is its phase, and

o(t)=dW¥/dtis the time dependent frequency of the pertur-  F|G. 1. The Keplerian ellipsédotted ling and Euler’s angles,
bation. We shall consider the case when the unperturbeg, andi. The electric field polarization is in th direction in the
electron starts on a circular orbit of rading and angular rest frame K,Y,Z). PointsP andN denote periapsis and ascending
frequencyQo=e(merg)’1’2. Note that, for convenience, we node in astronomical notations. Axesy (not shown, andz are
replacede, m,=1 in the Hamiltonian, equivalent to using attached to the ellipse.

dimensionless timet—Qyt, dimensionless coordinates

(X,Y,Z)—(X,Y,2)Ir, and radiug —r/ro, and normalizing  —&9)*?]/keJy(ke) [19]. HereJ,(x) andJ,(x) are the Bessel
the momentunp— p/(MeQor o). We also introduced dimen- function of integer ordek, and its derivative.

sionless field amplitude.— (r3/€)E, in the Hamiltonian, At this point, we proceed to studying passage through

with E, being the original amplitude. All frequencies in the resonance in our driven system. Recall that the atomic elec-

problem are dimensionless and correspond to original frel"on iS on a circular orbit initiallyi.e., =0 at some large

quencies normalized with respect &,. For simplicity, we negativet) and its Keplerian frequency is out of resonance

use linear frequency chirpy(t)= wo—At, whereA is the (see below with the driving perturbation. Since the driving

chirp rate andw, corresponds to normalized angular fre- f|eld is small, we focus on the case of small eccentricities

; ; itially. In this case a;~b;~a, a,~b,~eal/2, while
guency(or its harmonicsof the unperturbed electron, so, for ni oL T F2 T2 ’
examplewy=2 if the 2:1 resonance is considered. Note thato(ak>2)~0(bk>2)~o(8 ). We observe that only terms

in dimensionless notation# corresponds to originah/ Q3. W'tr\'NaZ ar?deZ n trt')e Ipertttjrr]b(teo'lthpartdof 2 z?jre propo.rtlotr;]al 0
We shall also assume adiabaticity, i.e=|A|Y2wy<1, as & ‘o sShall see below that this dependence som the

well as thaty <1, 50 the driving field can be treated as ag il CiE MU S ROTCR AR SO i these
perturbation. But, we shall use/u<<1, and, thereforeu P

will always be the largest of the two small parameters in theterms‘ Consequently, in studying the phase locking in the

problem, system we retain the terms Wik.h= 2'only inH4. The result-
It is convenient, at this stage, to transform to the action'"9 perturbed part of the Hamiltonian is
angle variablesl,,3 and 6;,3 [18] of the unperturbed sini
problem. Thenormalized actions are related to different H'= [(a,+by)cosd  +(a,—by)cos®_], (3)
physiclal qfantiti?/sz, [1=M,/Mg, 1,=M/Mgy, and I, 4
=M, "(m.e"/2|E|) "4, whereM is the magnitude of the total _ .
angSIa(r n’?ome|nt|3rrivlZ is the momentur% projection on the where ® . =203* 6, & m/2. Furthermore, sinca,—b,
Z axis (the direction of polarization of the driving electric IS small at smalls_, we fOCl.JS. on the rgson?nce assc_)uated
field), E is the energy of the unperturbed electron, and th ith the term having coefficiensi, +b, in H" above, i.e.,
normalization constani 0=meQOr§ is the initial angular arrive at thesingle resonancéiamiltonian
momentum. The angleg, , are Euler's anglegsee Fig. 1 wsini
0,= ¢, 6,= . The third Euler’s anglé (inclination), eccen- Ho=Ho+ ——(a,+b,)cosd. (4)
tricity e, and normalized semimajor axésof the ellipse are 4
simply related to the dimensionless actions, i.e., icos
=I,/1,, e2=1-13/15, anda=13.
Next, we transform the Hamiltoniafl) to the action-
angle variable$3] Hy = — % . MTsasini cosd, ®)
3

To lowest order irne, Hg, has the form

H=Hy+ uH, cosV, (2
whered=® , . This Hamiltonian yields the following evo-
where the unperturbed paH,=—1/213 (see, e.g., Ref. lution equations:
[18]), Hi=siniZ;_,(a coské;sin6,+b, sinkd; cosé,), and
coefficientsa, and by are a,=(2a/k)J,(ke); by=[2a(1 1,=0, (6)
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ca tions(12) and(13) is the same as that studied previoysg]

|z:M4 sini sin®, (7)  and, thus we can use already known results. One of the im-
portant conclusions of that theory is that if one starts with
ca small A at large negativer, then, regardless of the initial
l3= sini sin®; (8)  value ofd, the singular term withA ~* in the phase equation

guarantees efficient trapping into resonance followed by con-
tinuing synchronizationd®/dr~0) in the system at>0

b= — cosd as well, provided the driving parameter is above a threshold.
4I§sini ’ Numerically, the threshold ig,=0.411, while physical ar-
guments yield a somewhat higher valyg =3~%=0.439.
. pal &2 i,sini Therefore, by returning to our original parameters, we obtain
02=T T 5| cosD, the following scaling of the threshold driving amplitude with
I2sini &l3 respect to the driving frequency chirp rake and initial in-
2 clinationi:
. Mo 2
03=Qy+ Zsm|(28I3+8—|3 cosd, piy=0.67(sinig) 1A%, (14)
where (...)=d(...)/dt, and QK=1/I§ is the Keplerian The phase locking in our reduced system means that the
frequency of the unperturbed electron. phase mismatckd remains small at all times, i.e., at large

Now, in agreement with the form of phade, we seek positive 7, we obtain a monotonically increasing solution
passage through 2:1 resonance, i.€)c2 w, att=0 (re- A?~r, in other words, a monotonic increase of the eccen-

call that the driving frequency i¥ = w = wo,—At). Observe tricity. Fully nonlinear treatment of the problem is necessary

that Eqs.(6)—(8) yield two conservation laws when the eccentricity becomes large. Such fully nonlinear
theory of phase locked evolution can still be based on single
[1=110, 2l,—15=1, 9 resonance approximation. Its details are similar to those de-

o ) scribed in other applicationg.g., Ref[10]) and we shall not
where initially (on the circular orbit 1 0=130=1. Therefore, present these details here. Nevertheless, we mention that the
the problem reduces to a one-degree-of-freedom case chaipnservation laws9) still hold within the single resonance
acterized by, for exampldz and ®. We write I3=1+4l,  gpproximation in the fully nonlinear regime, while phase
where 4l is small in the initzial evolution stage. Thdp=1 locking d)~2-03+ Pz—w(t)~0 is preserved, as long as ad-

+ 6112, e~ 4l v, sini~(1-139) He= sinio, and, to lowest o yitional conditions are satisfie@ee the discussion of these
der ine, our evolution equations yield conditions in Sec. 1. Then the approximate relationt%
~ w(t) is satisfied at later times, or

- sini
5= 220 51025, (10) ,
2/13~2—At. (15
. sini . . .
D=At—65+ X0 51~ 120050 (11) Thus, the synchronized state yields acceleration of the elec-
4 tron and gradual approach towards the ionization lihgit

) o s —x (see Sec. IY. The simple time dependendéb), in
Finally, we use rescaled eccentricity= 6A~%s as anew  combination with the conservation law@), can be used for

dependent variable instead of, introduce a newslow)  calculating the eccentricity of the phase locked state
time variable =A%, and obtain the following evolution

equations: e?=1—15/13=1—(1/4 (1N 3+ 1) (16)
d—AznsimI), (120 We obtain a growing solution foe, asymptotically ap-
dr proachinge = (3/4)*2 at | ;—oc. Similarly, one can find the

4o expression for the inclination of the orbit:
n
L — L+ A24 2
gy AT cos®, (13 cosi=1,/1,=2 cosig/(1+13). 17

where 5= \/3/8A~ %y sini, is the rescaled driving ampli- Therefore, the inclination angle increases as phase locking

tude. continues, approachingr/2 at I;—. Finally, the linear
The system(12), (13) comprises a pair of time dependent chirp of the driving frequency is not necessary for preserva-

equations with aingleparametenr;. Note the presence of the tion of the phase locking in the system. Once trapped, one

characteristic term witlA~! in the phase equation in this can use arbitrary, but sufficiently slow chirp form, i.e., re-

system. This singular term is the direct consequence of leaplace At in Eq. (15) by any slow functionf(t) and even

ing theO(e) term only in the single resonance Hamiltonian reverse the variation of the driving frequen30]. In the

and plays a major role in the resonant phase locking phdatter case one will gradually return to a nearly original cir-

nomenon. Indeed, the form of the reduced evolution equacular state as described by Eq$6) and (17).
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X FIG. 3. The evolution of eccentricity of the orbit. The param-

. . . rs ar in Fig. 2. Th lid line: numerical solution of th
FIG. 2. The trajectory of the driven electron in the phase Iockedete s are as in Hg e solid line: numerical solution of the

- . . . : é)roblem described by the exact Hamiltonian. The dotted line is
regime during passage through a 2:1 resonance with chirped fr given by a reduced weakly nonlinear system. The dashed line rep-
quency driving electric field. The chirp rate /=0.002, driving '

- S T - o resents algebraic approximation. The lowest curve represents a so-
parameter.. =0.015, a_n_d mcln_na_tlonpfwlz (driving field in the lution of the exact problem with the same parameters, fut
plane of the orbjt Initial orbit is circle r=1. One observes a

gradual increase of eccentricity of the orbit synchronized with thezo'006’ .e., below the synchronization threshoidy(=0.0063).

driving field, as well as slow precession around the origin. )
system, and generally good agreement between different ap-

proximations. In addition, the lowest curve in the figure rep-
resents the solution of the exact problem for the same initial
conditions and parameters as previously, but with 0.006,

Now, we discuss evolution of canonical angles in the
phase locked state when the average valuebofemains

small. The phase locking yields one connection between i.e., below the threshold. The eccentricity saturates at some

and 02_‘ On th? other ha_nd, yvheh is small, .one <.:an_rep_lace value in this case, as the phase locking is destroyed beyond
cos®d in the first equation in Eq(8) by unity, yielding 61 the linear resonance. Next, Fig. 4 compares scalings of the
= — ueal/413sini, which describes a slow and slowly vary- threshold for synchronization as obtained in calculations us-
ing precession of the orbital plane around the direction of theng the exact Hamiltoniafi(A) io=7/2, (O) iy= /4, (O)
driving electric field. This motion completely defines both j = /6] and those given by Eq14) (straight lines. Again,
canonical angleg; and ;. The evolution of the third angle one can see a good agreement between the two results. This
is approximately given by the slowly varying Keplerian fre-

quency of the electron, i.eé),3~1/I§ [see the third equation 0.1 : —

in Eq. (8)]. Thus, the evolution of all degrees of freedom is
determined. Remarkably, in the synchronized regime, the=
complete motion can be approximately derived from simple
algebraic relation$15)—(17).

At this stage, we illustrate our theory by numerical ex-
amples. Figure 2 shows the trajectory of the electron in thes
phase locked regime as obtained by passage through 2:2
resonance. We show the case of chirp vate0.002, driving
parameter =0.015, and o= /2 (driving field in the plane
of the orbi). The threshold driving parameter in this case
was up=0.0063. We used a full Hamiltoniafi) in calcu-
lating this trajectory. One can see a slow increase of eccenz
tricity as well as precession of the trajectory described above&
Further results of these calculations are given in Fig. 3 show- 0.001 ‘ , L
ing the evolution of eccentricity of the orbit. The solid line in 8001 0.01
the figure represents the numerical solution of the exact CHIRP RATE, A
problem described by Eq1), the dotted line is obtained by~ FiG_ 4. The threshold driving parameter for synchronizaign
solving reduced weakly nonlinear systerti) and (13), (circles vs driving frequency chirp rata for three different initial
while the dashed line is given by the algebraic equati®).  inclinations[(A) iy= /2, (O) i,=m/4, (O) i,= /6], as obtained
We see a gradual increase of the eccentricity beyond thi calculations using the exact Hamiltonian. The solid lines repre-
linear resonance, indicating continuing phase locking in th&ent results given by Eq14).

=
=
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completes our first application of the adiabatic control of the _
electron state in the Rydberg atom by synchronization. 0,=

=N

pa l
2

e cosd, (22

N W

I1l. 1:1 RESONANCE AND INCLINATION CONTROL .
03:QK+/.LI 3i COS(D.
We have seen in Sec. Il how passage through 2:1 reso-
nance, results in efficient trapping into resonance followedVe see that; andl,— 15 are conserved. Therefore the prob-
by continuing synchronization with the drive, provided onelem again reduces to a one-degree-of-freedom system for a

usessmall eccentricityinitial condition (¢o~0) and if the canonical pair, sayl, and ®. Furthermore, initially, |y

driving amplitude is above a threshold. We have left khe =~I1,,=15, (io=~0,60=0) and, therefore, at later times,
=2 term only inH4 in Eqg. (2), i.e., constructed a single
resonance Hamiltonian for studying this phenomenon. This l1=1l10~1, I2=~13. (23)

choice of resonance is not the only one yielding efficient . . . .
trapping. We shall show here that passage through 1:1 res!ﬁ qther words, the (_)rb!t remains ngarly circular and only its
nance can be also used for achieving a similar goal, if, ini{n¢lination changes in time. If we write, =10+ 41, then, for
tially, one hassmall inclination(i,~0) of the orbit, i.e., the ~Smalli, one hag®=1—13/13~24l. Then, to lowest order in
driving field is nearly normal to the orbital plane. We shall 6! the canonical system fdp and® is

see that the corresponding single resonance Hamiltonian will

also Iead to a propesingqla}r termin the'phase mismatch i2=8l _ ﬁi sin®, (24)
evolution equation for efficient capture into resonance. Let 2
us consider this problem in more detail. Now, we leave the
k=1 term only in Eq(2). The resulting perturbed part of the - M
Hamiltonian is P~Q-w(t)+ ECOS(D' (29
, msini B If one further expandsQy=1;°=1,3~1;2-36l, uses
H'="—7—[(a+byjcosd. +(a;~by)cosd_], o(t)=wo—At, wherewy=Qyo=1;7, and uses as an in-

(18 dependent variable instead 6f, one has

where® ., = 6;* 6,— V¥ * /2. We focus again on the reso- .M
nance associated with the first term in EfQ), i.e., arrive at = Esmcb, (26)
the single resonance Hamiltonian

N L,
sini -
o (ay+by)cosd, 19 b=~At- 5i%+ scosd. @7

HSI’: H0+

Now, we introduce the slow time=AY%, rescaled inclina-
tion A= (3/2)"%/AY* and arrive at the same reduced single
parameter systenmd2) and(13), where the rescaled driving
parameter isp=+/3/8A~%*.. Interestingly, this is the same

where the phase mismatchds=® , . Finally, for simplic-
ity, consider the case of initially nearly circular orbit, i.e.,
g9~0. Then, in the initial excitation stagkl,, can be writ-

ten as value as for the 2:1 resonance problem described above, for
initial inclination of #/2. The corresponding threshold for
He~— i+ '“_ai cosd, (200 trapping into 1:1 and synchronization isompare to Eq.
213 2 (14)]
where we approximated sir\1—1%/12 by i. pin=0.67A%", (28)

The Hamiltonian (20) yields the following evolution

equations for our action-angle variables: At this point we have found conditions for capture into

resonance and synchronization. The aforementioned thresh-
old phenomenon was described in terms of weakly nonlinear

11=0, theory. When our system is captured into resonance, the in-
. clination grows with the decrease of the driving frequency
i2='u—a'sin<1>, (21)  and, at some point, one must switch to a fully nonlinear
2 theory of the phase locked state. This theory is similar to that
given elsewhergl0] and we shall not present its details here.
pai . Nonetheless, one can show that once started, the phase lock-
ls="5sin®; ing ® = 63+ 6,— w(t)~0 continues, under additional condi-
tions, in the fully nonlinear stage as well. Thép3~I 3
waly —At=1—-At, so
1=~ 5, cosD,
215 cosi=1,/l,~13~(1—At)'=. (29)

046230-5



E. GROSFELD AND L. FRIEDLAND PHYSICAL REVIEW E55 046230

(=]

0

0.9+ =
w A .02
Z 0.8 e 2
® g
207+ o 04
= v
E 0 6 L i 1 L 1 L 1 1 1
S ' F A 400 -200 0 200 400 600 800 1000 1200
o5t i ) TIME, t
'Z'l i 0.4
S 0.4+ 4 .. (b)
F‘ 7 4 O 03 r
<Zﬂ 0.3 g 4
3 G 202
002+ ’ ot
Z ’
= / go.1r .

0 1 L Il € ‘K

1 0 ) I ) I 1 ) 1
0 ‘ L ootV W “ J 400 -200 0 200 400 600 800 1000 1200
-200 -100 0 100 200 300 400 TIME, t
TIME, t

FIG. 6. Transition to stochastic instability by passage through a

FIG. 5. The evolution of inclination and eccentricitye in the 5., resonance(@ The unperturbed paitl, of the exact Hamil-
process of passage through a 1:1 resonance with the driving fielgh ;o \ersus time for 10 numerical runs with the same initial con-

having pole_lriza_tion perpendicul_ar to the initia_l plane _of the orbit. jiions (t=1i,=/2) as in Fig. 2, but different, equally spaced on
Exact Hamlltonlartll) was used in the calculations, chlrp rate WaS[O,Zw] initial differences between the phase of the Keplerian mo-
A=_0.002, aqd dr_|V|ng paramet¢r=0.015_. The dashed line: alge- o ang that of the driving field. One observes that all trajectories
braic approximation Eq(29) beyond the linear resonance. are similar in the synchronized stage despite initial phase differ-
ences, until the stochasticity threshold is reacheaat00. (b) The

We see that the inclinationgrows in time and approaches frequency» (O) of small phase oscillations of the phase locked
m/2, i.e., the orbital plane rotates to aline with the directionstate and the driving frequency (solid line) versus time. The

of the driving field. The orbit, at the same time, maintains itstransition to instability and dephasing take place whenw(t)/5.
nearly circular form, as the phase locked electron is acceler-

ated and approaches the ionization limit. We illustrate allwherel=1,2 corresponds to 1:1 and 2:1 resonance cases
these conclusions in Fig. 5, showing the evolution of incli-described above, whileR,=(a,+b,). Also, assuming a
nation and eccentricity in the process of passage through 1:dtrongly nonlinear stage, we have neglected small interaction
resonance. The results where obtained by using equationsrms in the second equation in E§0). Differentiation of
given by exact Hamiltoniar{1), chirp rateA=0.002, and the second equation in E(B0) and use of the first equation
driving parameteg. = 0.015(the threshold value in this case then yields

is up,=0.0063. We see that, as predicted, the eccentricity

remains small, while the inclination angle grows in the phase d2® -

locked state, nearly reaching/3 att=400 in this example, F”A_ vesind, (31)

and closely following the result predicted by EQ9) (the

dashed lingbeyond the linear resonance. where v?= 312 sini/4l5(a,+b,). This equation describes a

nonlinear penduluniv is the slowly varying characteristic
IV. DISCUSSION frequency of small oscillations of the pendulusmder the
action of a small constant torque. Thus, the condition for the
onset of stochastic instabilitfeading to ionization for some
{?ajectorie$ becomes

Now, we discuss the validity of approximations of our
theory. The isolated resonance approximation used above
valid as long aw<w(t), wherev is the characteristic fre-
qguency of small phase oscillations in the nonlinearly phase 312, sini
locked regimd 3]. If, in the process of adiabatic control, one '“—(al +h)) = yol(1), (32)
approaches the stage where this condition is violated, the 4I‘31
synchronized slow evolution described above is replaced by
stochastic instability and ionization of the atom for somewherey is some number between, say 0.1 and 1.0. Assuming
trajectories, due to resonance crossings. The frequerafy that one approaches this stochastic transition limit adiabati-
the trapped phase oscillations can be found by using apprgally through the synchronized state, we can estimate the
priate single resonance Hamiltonigding., Eqs.(4) and(19)].  time dependent parameters in this formula by using Egs.
Indeed, we write the following evolution equation equations(16), (17), or (29). We have tested conditigq82) numerically

associated with these Hamiltonians and show one of these tests in Fig&)@and Gb). Figure &a)
shows transition to stochastic instability in the case of syn-
dly  ul sini do | chronization by passage through 2:1 resonance with an os-
=7 Risin®, —=~—=—o(t), (30 cillating electric field polarized linearly in the orbital plane.
dr 4 dr 13 The figure shows the unperturbed pait, of the exact
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Hamiltonian(1) versus time for 10 numerical runs with the erated gradually approaching the ionization limit with the
same initial conditionsr(=1,i,=/2) as in Fig. 2, but dif- decrease of the driving frequency.

ferent, equally spaced drD,] initial differences between (i) The first scenario requires starting on a circular orbit
the phase of the Keplerian motion and that of the drivingand passage through 2:1 resonance with the driving field
field. We used the driving frequencyw(t)=D+(2  having afinite projection in the plane of the initial orbit. The
—D)exp(—At2) with D=0.05, A=0.005, and driving am- capture into resonance in this case is followed by continuous
plitude parameterw=0.013 in these calculations, so the Phase locking in the system despite slow variation of the
resonance passage occurreda0. One observes that de- driving frequency provided the driving amplitude is above a
spite the initial phase difference, all trajectories are synchrothreshold. The threshold amplitude scalesAd, A being
nized after passage through resonance until the stochasticitye chirp rate of the driving frequency. The continuing phase
threshold is reached &t 700. The phase locking discontin- l0cking in the system means slow evolution of the electron
ues beyond this time and, later, some trajectories reach iofbit (the eccentricity and inclinationin three dimensions,
ization limit. Figure 6b) compares the frequency (O) of  reflecting self-adjustment of the electron state for staying in
small phase oscillations in the phase locked state with théesonance with the driving field.

driving frequency(solid line) as functions of time. One can (i) The second scenario involves passage through 1:1
see in the figures that the transition to stochastic instabilif€Sonance when the driving field polarization is nearly per-
takes place whem~ w(t)/5. We also found that~ w(t)/5 pendicular to the. plane of |n|t|aI.Iy circular orbit. This route
was a good criterion for transition to stochasticity for a broad@lSo leads to efficient capture into resonance, followed by
range of values of the driving parameter and chirp rate. ~ continuing synchronization, provided the driving field ampli-

In addition to the single resonance conditiort w(t), the  tude is above the threshold, which again scales*sWhen
driving frequency must satisfy the adiabaticity condition trapped into resonance, the orbit, in this case, remains nearly
circular at all times, while inclination of the orbit varies
slowly in time with the decrease of the driving frequency.

(iv) The two scenarios above can be used separately, in
succession, or simultaneously for efficient three-dimensional
control of the electron state of the Rydberg atom. This con-
trol process is reversible, i.e., the electron orbit can be re-
turned back to a nearly initial state by simply reversing the
&irection of variation of the driving frequenay(t).

(v) Two conditions must be satisfied for the validity of our
approach to manipulation of Rydberg atoms. One condition
is the continuing satisfaction of the single resonance approxi-
mation, i.e.,v<w(t), where v is the frequency of small
phase oscillations in the phase locked state. If, in the phase

A is not too large, i.e., whem?>A. The existence of the ked regime with the decr f the driving fr n
potential minima is necessary for having trapped oscillationéOC ed regime 1€ decrease ot the driving frequency,
one violates this condition, the phase locking in the system is

of ®@, corresponding to phase locked oscillations in our dy- o . . N
namical problem. Thus, E33) at all times is necessary for destroyec_j and .stochasnc instability, leading to ionization for
having persisting phase locking in our driven atomic system.some t@ectones, takes pI_ace. Thg s_econd Cond'“o!" |s.the

Finally, the quantum mechanics imposes the constraint o diabaticity(33), guaranteeing continuing phase locking in
the principle quantum number=Myl3/2<1 (recall that e system. . . I
we use dimensionless actiohg, 3 normalized with respect (vi) Finally, quantum mechanics requires _the p_rlnc_lpal
to the angular momenturiul oi‘ziahe initial orbiy, and pos- quantum numben to be much greater than unity to justifty

9 0 ' P our classical description of the dynamics. Additional

sibly other constraints, which are still unknown. . . :
guantum-mechanical conditions may exist, but presently are
unknown, since there exists no theory studying the transition
V. CONCLUSIONS from classical to quantum regime in the driven phase locked

(i) We have studied passage through resonances and Syﬁgtes _describ_ed here. Development of such a theory seems to
chronization of the electron state of a Rydberg atom driverP€ @n interesting goal for future work.
by linearly polarized oscillating electric field with slowly
decreasing frequency. Two possibilities exist leading to effi-
cient (10099 capture into resonance regardless the value of We acknowledge the support of the US-Israel Binational
the initial driving phase. In both cases the electron is accelScience FoundatiofGrant No. 1998474

|o|/v?=Al1P<1, (33
Previously, we have mentioned conditieA=A/w3<1, but,
sincev<w(t), Eq. (33) is a stronger inequality. The reason
for demanding Eq(393) at this stage is seen from E(B1).

Indeed, this equation describes a quasiparticle moving in
effective tilted cosine potential

V= — AD — 12 cosd. (34

This potential possesses minima only if the tilting coefficient
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